theory The powerdomain of a
domain D is a domain
containing some of the
subsets of D. Due to the asymmetry
therefore of a domain) the powerdomain cannot contain all the
subsets of D. This is because there may be different sets X
and Y such that X #@= Y and Y #@= X which, by the asymmetry
condition would have to be considered equal.
There are at least three possible orderings of the subsets of
a powerdomain:
Egli-Milner:
X #@= Y iff for all x in X, exists y in Y: x #@= y
and for all y in Y, exists x in X: x #@= y
("The other domain always contains a related element").
Hoare or Partial Correctness or Safety:
X #@= Y iff for all x in X, exists y in Y: x #@= y
("The bigger domain always contains a bigger element").
Smyth or Total Correctness or Liveness:
X #@= Y iff for all y in Y, exists x in X: x #@= y
("The smaller domain always contains a smaller element").
approximation to a smaller value then the Hoare powerdomain is
appropriate because the safe approximation Y to the
powerdomain X contains a safe approximation to each point in
X.
(1995-02-03)